
BFGS WITH UPDATE SKIPPING AND VARYING MEMORY

TAMARA GIBSONy, DIANNE P. O'LEARYz , AND LARRY NAZARETHx

July 9, 1996

Abstract. We give conditions under which limited-memory quasi-Newton methods with exact
line searches will terminate in n steps when minimizing n-dimensional quadratic functions. We show
that although all Broyden family methods terminate in n steps in their full-memory versions, only
BFGS does so with limited-memory. Additionally, we show that full-memoryBroyden familymethods
with exact line searches terminate in at most n + p steps when p matrix updates are skipped. We
introduce new limited-memoryBFGS variants and test them on nonquadraticminimizationproblems.

Key words. minimization, quasi-Newton, BFGS, limited-memory, update skipping, Broyden
family

1. Introduction. The quasi-Newton family of algorithms remains a standard
workhorse for minimization. Many of these methods share the properties of �nite
termination on strictly convex quadratic functions, a linear or superlinear rate of
convergence on general convex functions, and no need to store or evaluate the second
derivative matrix. In general, an approximation to the second derivative matrix is
built by accumulating the results of earlier steps. Descriptions of many quasi-Newton
algorithms can be found in books by Luenberger [16], Dennis and Schnabel [7], and
Golub and Van Loan [11].

Although there are an in�nite number of quasi-Newton methods, one method sur-
passes the others in popularity: the BFGS algorithm of Broyden, Fletcher, Goldfarb,
and Shanno; see, e.g., Dennis and Schnabel [7]. This method exhibits more robust be-
havior than its relatives. Many attempts have been made to explain this robustness,
but a complete understanding is yet to be obtained [23]. One result of the work in this
paper is a small step toward this understanding, since we investigate the question of
how much and which information can be dropped in BFGS and other quasi-Newton
methods without destroying the property of quadratic termination.

We answer this question in the context of exact line search methods, those that
�nd a minimizer on a one-dimensional subspace at every iteration. (In practice,
inexact line searches that satisfy side conditions such as those proposed by Wolfe, see
x4.3, are substituted for exact line searches.) We focus on modi�cations of well-known
quasi-Newton algorithms resulting from limiting the memory, either by discarding
the results of early steps (x2) or by skipping some updates to the second derivative
approximation (x3). We give conditions under which quasi-Newton methods will
terminate in n steps when minimizing quadratic functions of n variables. Although
all Broyden familymethods (see x2) terminate in n steps in their full-memory versions,
we show that only BFGS has n-step termination under limited-memory. We also show
that the methods from the Broyden family terminate in n+ p steps even if p updates
are skipped, but termination is lost if we both skip updates and limit the memory.

yApplied Mathematics Program, University of Maryland, College Park, MD 20742.
gibson@math.umd.edu. This work was supported in part by the National Physical Science Con-
sortium, the National Security Agency, and the University of Maryland.

zDepartment of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742. oleary@cs.umd.edu. This work was supported by the National
Science Foundation under grant NSF 95-03126.

xDepartment of Pure and Applied Mathematics, Washington State University, Pullman, WA
99164. nazareth@amath.washington.edu.

1

2 T. Gibson, D. P. O'Leary, L. Nazareth

In x4, we report the results of experiments with new limited-memory BFGS vari-
ants on problems taken from the CUTE [3] test set, showing that some savings in
time can be achieved.

Notation. Matrices and vectors are denoted by boldface upper-case and lower-case
letters respectively. Scalars are denoted by Greek or Roman letters. The superscript
\T" denotes transpose. Subscripts denote iteration number. Products are always
taken from left to right. The notation spanfx1;x2; : : : ;xkg denotes the subspace
spanned by the vectors x1;x2; : : : ;xk. Whenever we refer to an n-dimensional strictly
convex quadratic function, we assume it is of the form

f(x) =
1

2
xTAx� xTb;

where A is a positive de�nite n � n matrix and b is an n-vector.

2. Limited-Memory Variations of Quasi-Newton Algorithms. In this
section we characterize full-memory and limited-memory methods that terminate in
n iterations on n-dimensional strictly convex quadratic minimization problems using
exact line searches. Most full-memory versions of the methods we will discuss are
known to terminate in n iterations. Limited-memory BFGS (L-BFGS) was shown by
Nocedal [22] to terminate in n steps. The preconditioned conjugate gradient method,
which can be cast as a limited-memory quasi-Newton method, is also known to termi-
nate in n iterations; see, e.g., Luenberger [16]. Little else is known about termination
of limited-memory methods.

Let f(x) denote the strictly convex quadratic function to be minimized, and let
g(x) denote the gradient of f . We de�ne gk � g(xk), where xk is the kth iterate. Let

sk = xk+1 � xk;

denote the change in the current iterate and

yk = gk+1 � gk;

denote the change in gradient.

Let x0 be the starting point, and let H0 be the initial inverse Hessian approximation.
For k = 0; 1; : : :

1. Compute dk = �Hkgk.
2. Choose �k > 0 such that f(xk + �dk) � f(xk + �kdk) for all � > 0.
3. Set sk = �kdk.
4. Set xk+1 = xk + sk .
5. Compute gk+1.
6. Set yk = gk+1 � gk .
7. Choose Hk+1.

Fig. 2.1. General Quasi-Newton Method

We present a general result that characterizes quasi-Newton methods, see Figure 2.1,
that terminate in n iterations. We restrict ourselves to methods with an update of
the form

Hk+1 =
kP
T
kH0Qk +

mkX
i=1

wikz
T
ik:(2.1)

Here,

L-BFGS Variations 3

1. H0 is an n� n symmetric positive de�nite matrix that remains constant for
all k, and
k is a nonzero scalar that can be thought of as an iterative rescaling of
H0.

2. Pk is an n� n matrix that is the product of projection matrices of the form

I�
uvT

uTv
;(2.2)

where u 2 spanfy0; : : : ;ykg and v 2 spanfs0; : : : ; sk+1g, and Qk is an n � n matrix
that is the product of projection matrices of the same form where u is any n-vector
and v 2 spanfs0; : : : ; skg,

3. mk is a nonnegative integer, wik (i = 1; 2; : : : ;mk) is any n-vector, and zik
(i = 1; 2; : : : ;mk) is any vector in spanfs0; : : : ; skg.

We refer to this form as the general form. The general form �ts many known
quasi-Newton methods, including the Broyden family and the limited-memory BFGS
method. We do not assume that these quasi-Newton methods satisfy the secant
condition,

Hk+1yk = sk;

nor that Hk+1 is positive de�nite and symmetric. Symmetric positive de�nite updates
are desirable since this guarantees that the quasi-Newton method produces descent
directions. Note that if the update is not positive de�nite, we may produce a dk such
that dTk sk > 0 in which case we choose �k over all negative � rather than all positive
�.

Example. The method of steepest descent [16] �ts the general form (2.1). For
each k we de�ne

k = 1; mk = 0; and Pk = Qk = H0 = I:(2.3)

Note that neither w nor z vectors are speci�ed since mk = 0.
Example. The (k + 1)st update for the conjugate gradient method with precon-

ditioner H0 �ts the general form (2.1) with

k = 1; mk = 0; Pk = I�
yks

T
k

sTk yk
; and Qk = I:(2.4)

Example. The L-BFGS update, see Nocedal [22], with limited-memory constant
m can be written as

Hk+1 = VT
k�mk+1;kH0Vk�mk+1;k +

kX
i=k�mk+1

VT
i+1;k

sis
T
i

sTi yi
Vi+1;k;(2.5)

where mk = minfk + 1;mg and

Vik =
kY
j=i

�
I �

yis
T
i

sTi yi

�
:

L-BFGS �ts the general form (2.1) if at iteration k we choose

k = 1; mk = minfk + 1;mg;(2.6)

Pk = Qk = Vk�mk+1;k; and

wik = zik =
(Vk�mk+i+1;k)

T (sk�mk+i)p
(sk�mk+i)

T (yk�mk+i)
:

4 T. Gibson, D. P. O'Leary, L. Nazareth

Observe that Pk;Qk and zik all obey the constraints imposed on their construction.
BFGS is related to L-BFGS is the following way: if we were to use every (s;y)

pair in the formation of each update (i.e. we have unlimited memory), we would be
creating the same updates as BFGS. In practice, however, one would never do that
because it would take more memory than storing the BFGS matrix.

Example. We will de�ne limited-memory DFP (L-DFP). Our de�nition is consis-
tent with the de�nition of limited-memory BFGS given in Nocedal [22]. Let m � 1
and let mk = minfk + 1;mg. In order to de�ne the L-DFP update we need to create
a sequence of auxiliary matrices for i = 0; : : : ;mk.

Ĥ
(0)
k+1 = H0; and

Ĥ
(i)
k+1 = Ĥ

(i�1)
k+1 +UDFP(Ĥ

(i�1)
k+1 ; sk�mk+i;yk�mk+i);

where

UDFP(H; s;y) = �
HyyTH

yTHy
+
ssT

sTy
:

The matrix Ĥ
(mk)
k+1 is the result of applying the DFP update mk times to the matrix

H0 with the mk most recent (s;y) pairs. Thus, the (k + 1)st L-DFP matrix is given
by

Hk+1 = Ĥ
(mk)
k+1 :

To simplify our description, note that Ĥ
(i)
k+1 can be rewritten as

Ĥ
(i)
k+1 =

I�

Ĥ
(i�1)
k+1 yk�mk+iy

T
k�mk+i

yTk�mk+i
Ĥ
(i�1)
k+1 yk�mk+i

!
Ĥ
(i�1)
k+1 +

sk�mk+is
T
k�mk+i

sT
k�mk+i

yk�mk+i

=
�
V̂
(i)
0k

�T
H0 +

iX
j=1

�
V̂
(i)
jk

�T sk�mk+js
T
k�mk+j

sTk�mk+j
yk�mk+j

;

for i � 1 where

V̂
(i)
jk =

iY
l=j+1

2
64I � yk�mk+l

�
H
(l�1)
k+1 yk�mk+l

�T
yTk�mk+l

H
(l�1)
k+1 yk�mk+l

3
75 :

Thus Hk+1 can be written as

Hk+1 = VT
0kH0 +

mkX
i=1

VT
ik

sk�mk+is
T
k�mk+i

sT
k�mk+i

yk�mk+i

!
;(2.7)

where

Vik =
mkY

j=i+1

2
64I� yk�mk+j

�
Ĥ
(j�1)
k+1 yk�mk+j

�T
yTk�mk+j

Ĥ
(j�1)
k+1 yk�mk+j

3
75 :

L-BFGS Variations 5

Equation (2.7) looks very much like the general form given in (2.1). L-DFP �ts the
general form with the following choices:

k = 1; Pk = V0k; Qk = I;(2.8)

wik = VT
iksk�mk+i=(s

T
k�mk+iyk�mk+i); and zik = sk�mk+i:

Except for the choice of Pk, it is trivial to verify that the choices satisfy the general
form. To prove that Pk satis�es the requirements, we need to show

Ĥ
(i�1)
k+1 yk�mk+i 2 spanfs0; : : : ; sk+1g; for i = 1; : : : ;mk and all k:(2.9)

Proposition 2.1. For limited-memory DFP, the following two conditions hold
for each value of k:

Ĥ
(i�1)
k+1 yk�mk+i 2 spanfs0; : : : ; skg for i = 1; : : : ;mk � 1 and(2.10)

Ĥ
(i�1)
k+1 yk�mk+i 2 spanfs0; : : : ; sk;H0gk+1g for i = mk; and

spanfH0g0; : : : ;H0gk+1g � spanfs0; : : : ; sk+1g:(2.11)

Proof. We will prove this via induction. Suppose k = 0. Then m0 = 1. We have

Ĥ
(0)
k+1yk =H0y0 = H0g1 �H0g0 2 spanfs0;H0g1g:

(Recall that spanfs0g is trivially equal to spanfH0g0g.) Furthermore,

s1 = ��1H1g1

= ��1

�
H0g1 �

yT0H0g1

yT0H0y0
(H0g1 �H0g0) +

sT0 g1

yT0 s0
s0

�
:

So we can conclude,�
1�

yT0H0g1

yT0H0y0

�
H0g1 = �

�
1

�1
s1 +

yT0H0g1

yT0H0y0
H0g0 +

sT0 g1

yT0 s0
s0

�
:

Hence, H0g1 2 spanfs0; s1g, and so the base case holds.
Assume that

Ĥ
(i�1)
k yk�1�mk�1+i 2 spanfs0; : : : ; sk�1g for i = 1; : : : ;mk�1 � 1; and

Ĥ
(i�1)
k yk�1�mk�1+i 2 spanfs0; : : : ; sk�1;H0gkg for i = mk�1; and

spanfH0g0; : : : ;H0gkg � spanfs0; : : : ; skg:

We will use induction on i to show (2.10) for the (k + 1)st case. For i = 1,

Ĥ
(0)
k+1yk�mk+1 = H0yk�mk+1 = H0gk�mk+2 �H0gk�mk+1:

Using the induction assumptions from the induction on k, we get that

Ĥ
(0)
k+1yk�mk+1 2 spanfs0; : : : ; sk;H0gk+1g; if mk = 1;

Ĥ
(0)
k+1yk�mk+1 2 spanfs0; : : : ; skg; otherwise:

6 T. Gibson, D. P. O'Leary, L. Nazareth

Assume that Ĥ
(i�2)
k+1 yk�mk+i�1 2 spanfs0; : : : ; skg (induction assumption for i). Next,

Ĥ
(i�1)
k+1 yk�mk+i =

�
V̂
(i�1)
0k

�T
H0yk�mk+i

+
i�1X
j=1

sTk�mk+j�1
yk�mk+i

sTk�mk+j�1
yk�mk+j�1

�
V̂
(i�1)
jk

�T
sk�mk+j�1:

For values of i � mk � 1,
�
V̂
(i�1)
jk

�T
maps any vector v into

spanfv; Ĥ
(0)
k+1yk�mk+1; : : : ; Ĥ

(i�2)
k+1 yk�2g:

and so Ĥ(i�1)
k+1 yk�mk+i is in

spanfH0yk�mk+i; Ĥ
(0)
k+1yk�mk+1; : : : ; Ĥ

(i�2)
k+1 yk�2; sk�mk+1; : : : ; sk�2g:

Using the induction assumptions for both i and k, we get

Ĥ
(i�1)
k+1 yk�mk+i 2 spanfs0; : : : ; skg;

and we can continue the induction on i. If i = mk, then

Ĥ
(mk�1)
k+1 yk 2 spanfH0yk; Ĥ

(0)
k+1yk�mk+1; : : : ; Ĥ

(mk�2)
k+1 yk�1; sk�mk+1; : : : ; sk�1g;

so

Ĥ
(mk�1)
k+1 yk 2 spanfs0; : : : ; sk;H0gk+1g:

Hence the induction on i is complete and this proves (2.10) in the (k + 1)st case.
Now, consider

sk+1 = ��k+1Hk+1gk+1

= VT
0kH0gk+1 +

mkX
i=1

sTk�mk+i
gk+1

sTk�mk+i
yk�mk+i

VT
iksk�mk+i:

Using the structure of Vjk and (2.10) we see that

H0gk+1 2 spanfs0; : : : ; sk+1g:

Hence, (2.11) also holds in the (k + 1)st case.
Example. The Broyden Class or Broyden Family is the class of quasi-Newton

methods whose matrices are linear combinations of the DFP and BFGS matrices:

Hk+1 = �HBFGS
k + (1� �)HDFP

k ; � 2 R;

see, e.g., Luenberger [16, Chap. 9]. The parameter � is usually restricted to values
that are guaranteed to produce a positive de�nite update, although recent work with
SR1, a Broyden Class method, by Khalfan, Byrd and Schnabel [14] may change this
practice. No restriction on � is necessary for the development of our theory. The
Broyden class update can be expressed as

Hk+1 = Hk +
sksk

skyk
�
Hkyky

T
kHk

yTkHkyk

+ � (ykHkyk)

�
sk

sTk yk
�

Hkyk

yTkHkyk

��
sk

sTk yk
�

Hkyk

yTkHkyk

�T
:

L-BFGS Variations 7

We sketch the explanation of how the full-memory version �ts the general form
given in (2.1). The limited-memory case is similar. We can rewrite the Broyden Class
update as follows:

Hk+1 = Hk + (�� 1)
Hkyky

T
k

yTkHkyk
Hk � �

sky
T
k

sTk yk
Hk +

sks
T
k

sTk yk

+ �
yTkHkyk � sksTk

(sTk yk)
2

� �
Hkyks

T
k

sTk yk

=

"
I�

�
(1� �)sTk yk �Hkyk + �yTkHkyk � sk

�
yTk

yTkHkyk � sTk yk

#
Hk

+

��
1 + �

yTkHkyk

sT
k
yk

�
sk � �Hkyk

�
sTk
sT
k
yk

:

Hence,

Hk+1 = V0kH0 +
k+1X
i=1

wikz
T
ik;

where

Vik =
Qk

j=i

�
I�

((1��)sTkyk�Hkyk+�y
T

k
Hkyk�sk)yTk

yT
k
Hkyk�s

T

k
yk

�
;

wik = Vik

h�
1 + �

yT
i�1

Hi�1yi�1

sT
i�1

yi�1
si�1

�
� �Hi�1yi�1

i
; and zik =

sT
i�1

sT
i�1

yi�1
:

It is left to the reader to show that Hkyk is in spanfs0; : : : ; sk+1g, and thus the
Broyden Class updates �t the form in (2.1).

2.1. Termination of Limited-Memory Methods. In this section we show
that methods �tting the general form (2.1) produce conjugate search directions (The-
orem 2.2) and terminate in n iterations (Corollary 2.3) if and only if Pk maps
spanfy0; : : : ;ykg into spanfy0; : : : ;yk�1g for each k = 1; 2; : : :; n. Furthermore, this
condition on Pk is satis�ed only if yk is used in its formation (Corollary 2.4).

Theorem 2.2. Suppose that we apply a quasi-Newton method (Figure 2.1) with
an update of the form (2.1) to minimize an n-dimensional strictly convex quadratic
function. Then for each k before termination (i.e. gk+1 6= 0),

gTk+1sj = 0; for all j = 0; 1; : : : ; k;(2.12)

sTk+1Asj = 0; for all j = 0; 1; : : : ; k; and(2.13)

spanfs0; : : : ; sk+1g = spanfH0g0; : : : ;H0gk+1g;(2.14)

if and only if

Pjyi 2 spanfy0; : : : ;yj�1g; for all i = 0; 1; : : :; j; j = 0; 1; : : :; k:(2.15)

Proof. (() Assume that (2.15) holds. We will prove (2.12){(2.14) by induction.
Since the line searches are exact, g1 is orthogonal to s0. Using the fact that P0y0 = 0

8 T. Gibson, D. P. O'Leary, L. Nazareth

from (2.15), and the fact that zi0 2 spanfs0g implies gT1 zi0 = 0, i = 1; : : : ;mk, we
see that s1 is conjugate to s0 since

sT1As0 = �1d
T
1 y0

= ��1g
T
1H

T
1 y0

= ��1g
T
1

0Q

T
0H0P0 +

m0X
i=0

zi0w
T
i0

!
y0

= ��1

0g

T
1Q

T
0H0P0y0 +

m0X
i=0

gT1 zi0w
T
i0y0

!

= 0:

Lastly, spanfs0g = spanfH0g0g, and so the base case is established.

We will assume that claims (2.12){(2.14) hold for k = 0; 1; : : : ; k̂ � 1 and prove

that they also hold for k = k̂.
The vector gk̂+1 is orthogonal to sk̂ since the line search is exact. Using the

induction hypotheses that g
k̂
is orthogonal to fs0; : : : ; sk̂�1g and s

k̂
is conjugate to

fs0; : : : ; sk̂�1g, we see that for j < k̂,

gT
k̂+1

sj = (gk̂ + yk̂)
T sj = (gk̂ +Ask̂)

T sj = 0:

Hence, (2.12) holds for k = k̂.
To prove (2.13), we note that

sT
k̂+1

Asj = ��
k̂+1g

T

k̂+1
HT

k̂+1
yj ;

so it is su�cient to prove that gT
k̂+1

HT

k̂+1
yj = 0 for j = 0; 1; : : : ; k̂. We will use the

following facts:
(i) gT

k̂+1
QT

k̂
= gT

k̂+1
since the v in each of the projections used to form Q

k̂
is in

spanfs0; : : : ; sk̂g and gk̂+1 is orthogonal to that span.

(ii) gT
k̂+1

zik̂ = 0 for i = 1; : : : ;mk̂ since each zik̂ is in spanfs0; : : : ; sk̂g and gk̂+1
is orthogonal to that span.

(iii) Since we are assuming that (2.15) holds true, for each j = 0; 1; : : : ; k̂ there

exists �0; : : : ; �k̂�1 such that Pk̂yj can be expressed as
Pk̂�1

i=0 �iyi.

(iv) For i = 0; 1; : : : ; k̂�1, gk̂+1 is orthogonal toH0yi because gk̂+1 is orthogonal
to spanfs0; : : : ; sk̂g and H0yj 2 spanfs0; : : : ; sk̂g from (2.14).
Thus,

gT
k̂+1

HT

k̂+1
yj = gT

k̂+1

k̂
QT

k̂
H0Pk̂

+

m
k̂X

i=1

z
ik̂
wT

ik̂

!
yj

=

k̂
gT
k̂+1

QT

k̂
H0Pk̂yj +

m
k̂X

i=1

gT
k̂+1

z
ik̂
wT

ik̂
yj

=

k̂
gT
k̂+1

H0Pk̂
yj

=
k̂g
T

k̂+1
H0

0
@k̂�1X

i=1

�iyi

1
A

L-BFGS Variations 9

=

k̂

k̂�1X
i=1

�ig
T

k̂+1
H0yi

= 0:

Thus, (2.13) holds for k = k̂.
Lastly, using (i) and (ii) from above,

s
k̂+1 = ��

k̂+1Hk̂+1gk̂+1

= ��k̂+1

k̂P

T

k̂
H0Qk̂gk̂+1 +

m
k̂X

i=1

wik̂z
T

ik̂
gk̂+1

!

= ��
k̂+1
k̂P

T

k̂
H0gk̂+1:

Since PT

k̂
maps any vector v into spanfv; s0; : : : ; sk̂+1g by construction, there exist

�0; : : : ; �k̂+1 such that

sk̂+1 = ��k̂+1
k̂

0
@H0gk̂+1 +

k̂+1X
i=0

�isi

1
A :

Hence,

H0gk̂+1 2 spanfs0; : : : ; sk̂+1g;

so

spanfH0g0; : : : ;H0gk̂+1g � spanfs0; : : : ; sk̂+1g:

To show equality of the sets, we will show that H0gk̂+1 is linearly independent of
fH0g0; : : : ;H0gk̂g. (We already know that the basis fH0g0; : : : ;H0gk̂g is linearly
independent since it spans the same space as the linearly independent set fs0; : : : ; sk̂g
and has the same number of elements.) Suppose that H0gk̂+1 is not linearly indepen-
dent. Then there exist �0; : : : ; �k̂, not all zero, such that

H0gk̂+1 =
k̂X
i=0

�iH0gi:

Recall that g
k̂+1 is orthogonal to fs0; : : : ; sk̂g. By our induction assumption, this

implies that g
k̂+1 is also orthogonal to fH0g0; : : : ;H0gk̂g. Thus for any j between 0

and k̂,

0 = gT
k̂+1

H0gj =

0
@ k̂X

i=0

�iH0gi

1
A
T

gj =
k̂X
i=0

�ig
T
i H0gj = �jg

T
j H0gj:

Since H0 is positive de�nite and gj is nonzero, we conclude that �j must be zero.
Since this is true for every j between zero and k, we have a contradiction. Thus, the
set fH0g0; : : : ;H0gk̂+1g is linearly independent. Hence, (2.14) holds for k = k̂.

()) Assume that (2.12){(2.14) hold for all k such that gk+1 6= 0 but that (2.15)
does not hold; i.e., there exist j and k such that gk+1 6= 0, j is between 0 and k, and

Pkyj 62 spanfy0; : : : ;yk�1g(2.16)

10 T. Gibson, D. P. O'Leary, L. Nazareth

This will lead to a contradiction. By construction of Pk, there exist �0; : : : ; �k such
that

Pkyj =
kX
i=0

�iyi:(2.17)

By assumption (2.16), �k must be nonzero. From (2.13), it follows that gTk+1H
T
k+1yj =

0. Using facts (i), (ii), and (iv) from before, (2.14) and (2.17), we get

0 = gTk+1H
T
k+1yj = gTk+1

kQ

T
kH0Pk +

mkX
i=1

zikw
T
ik

!
yj

=
kg
T
k+1Q

T
kH0Pkyj +

mkX
i=1

gTk+1zikw
T
ikyj

=
kg
T
k+1H0Pkyj

=
kg
T
k+1H0

kX
i=0

�iyi

!

=
k

kX
i=0

�ig
T
k+1H0yi

=
k�kg
T
k+1H0yk

=
k�k
�
gTk+1H0gk+1 � g

T
k+1H0gk

�
=
k�kg

T
k+1H0gk+1:

Thus since neither
k nor �k is zero, we must have

gTk+1H0gk+1 = 0;

but this is a contradiction since H0 is positive de�nite and gk+1 was assumed to be
nonzero.

When a method produces conjugate search directions, we can say something about
termination.

Corollary 2.3. Suppose we have a method of the type described in Theorem 2.2
satisfying (2.15). Suppose further that Hjgj 6= 0 whenever gj 6= 0. Then the scheme
reproduces the iterates from the conjugate gradient method with preconditioner H0 and
terminates in no more than n iterations.

Proof. Let k be such that g0; : : : ;gk are all nonzero and such that Higi 6= 0 for
i = 0; : : : ; k. Since we have a method of the type described in Theorem 2.2 satisfying
(2.15), conditions (2.12) { (2.14) hold. We claim that the (k + 1)st subspace of
search directions, spanfs0; : : : ; skg, is equivalent to the (k + 1)st Krylov subspace,
spanfH0g0; : : : ; (H0A)kH0g0g.

From (2.14), we know that spanfs0; : : : ; skg = spanfH0g0; : : : ;H0gkg. We will
show via induction that spanfH0g0; : : : ;H0gkg = spanfH0g0; : : : ; (H0A)kH0g0g.
This base case is trivial, so assume that

spanfH0g0; : : : ;H0gig = spanfH0g0; : : : ; (H0A)iH0g0g;

for some i < k. Now,

gi+1 = Axi+1 � b = A(xi + si)� b = Asi + gi;

L-BFGS Variations 11

and from (2.14) and the induction hypothesis,

si 2 spanfH0g0; : : : ;H0gig = spanfH0g0; : : : ; (H0A)iH0g0g;

which implies that

H0Asi 2 spanf(H0A)H0g0; : : : ; (H0A)i+1H0g0g:

So,

H0gi+1 2 spanfH0g0; : : : ; (H0A)i+1H0g0g:

Hence, the search directions span the Krylov subspace. Since the search directions
are conjugate (2.13) and span the Krylov subspace, the iterates are the same as those
produced by conjugate gradients with preconditioner H0.

Since we produce the same iterates as the conjugate gradient method and the
conjugate gradient method is well-known to terminate within n iterations, we can
conclude that this scheme terminates in at most n iterations.

Note that we require that Hjgj be nonzero whenever gj is nonzero; this require-
ment is necessary since not all the methods produce positive de�nite updates and it
is possible to construct an update that maps gj to zero. If this were to happen, we
would have a breakdown in the method.

The next corollary de�nes the role that the latest information (sk and yk) plays
in the formation of the kth H-update.

Corollary 2.4. Suppose we have a method of the type described in Theo-
rem 2.2 satisfying (2.15). Suppose further that at the kth iteration Pk is composed
of p projections of the form in (2.2). Then at least one of the projections must have

u =
Pk

i=0 �iyi with �k 6= 0. Furthermore, if Pk is a single projection (p = 1), then v
must be of the form v = �ksk + �k+1sk+1 with �k 6= 0.

Proof. Consider the case of p = 1. We have

Pk = I�
uvT

vTu
;

where u 2 spanfy0; : : : ;ykg and v 2 spanfs0; : : : ; sk+1g. We will assume that

u =
kX
i=0

�iyi and v =
k+1X
i=0

�isi:

for some scalars �i and �i. By (2.15), there exist �0; : : : ; �k�1 such that

Pkyk =
k�1X
i=0

�iyi:

Then

yk �
vTyk

vTu
u =

k�1X
i=0

�iyi;

and so

vTyk

vTu
u = yk �

k�1X
i=0

�iyi:(2.18)

12 T. Gibson, D. P. O'Leary, L. Nazareth

From (2.13), the set fs0; : : :skg is conjugate and thus linearly independent. Since we
are working with a quadratic, yi = Asi for all i; and since A is symmetric positive
de�nite, the set fy0; : : : ;ykg is also linearly independent. So the coe�cient of the yk
on the left-hand side of (2.18) must match that on the right-hand side, thus

vTyk

vTu
�k = 1:

Hence,

�k 6= 0;(2.19)

and yk must make a nontrivial contribution to Pk.
Next we will show that �0 = �1 = � � � = �k�1 = 0. Assume that j is between 0

and k � 1. Then

Pkyj = yj �
vTyj

vTu
u

= yj �

�Pk+1
i=1 �isi

�T
yj

vTu
u

= yj �

Pk+1
i=1 �is

T
i Asj

vTu
u

= yj �
�js

T
j Asj

vTu
u:

Now sjAsj is nonzero because A is positive de�nite. If �j is nonzero then the coe�-
cient of u is nonzero and so yk must make a nontrivial contribution to Pkyj, implying
that Pkyj 62 spanfy0; : : : ;yk�1g. This is a contradiction. Hence, �j = 0.

To show that �k 6= 0, consider Pkyk. Suppose that �k = 0. Then

vTyk = �k+1y
T
k sk+1 + �ky

T
k sk

= �k+1s
T
kAsk+1

= 0;

and so

Pkyk = yk �
vTyk

vTu
u = yk:

This contradicts Pkyk 2 spanfy0; : : : ;yk�1g, so �k must be nonzero.
Now we will discuss that p > 1 case. Label the u-components of the p projections

as u1 through up. Then

Pkyk = yk +

pX
i=1

iui;

for some scalars
1 through
p. We know that

Pkyk 2 spanfy0; : : : ;yk�1g;

L-BFGS Variations 13

and that

yk 62 spanfy0; : : : ;yk�1g:

Thus

yk 2 spanfu1; : : : ; upg;

and since ui 2 spanfy0; : : : ;ykg for i = 1; : : : ; p, we can conclude that at least one ui
must have a nontrivial contribution from yk.

2.2. Examples of Methods that Reproduce the CG Iterates. Here are
some speci�c examples of methods that �t the general form, satisfy condition (2.15)
of Theorem 2.2, and thus terminate in at most n iterations.

Example. The conjugate gradient method with preconditioner H0, see (2.4),
satis�es condition (2.15) of Theorem 2.2 since

Pkyj =

�
I�

yks
T
k

sTk yk

�
yj = 0 for all j = 0; : : : ; k:

Example. Limited-memory BFGS, see (2.6), satis�es condition (2.15) of Theo-
rem 2.2 since

Pkyj =

�
0 for j = k �mk + 1; : : : ; k; and
yj for j = 0; : : : ; k �mk:

Example. DFP (with full memory), see (2.8), satis�es condition (2.15) of Theo-
rem 2.2. Consider Pk in the full memory case. We have

Pk =
kY
j=0

�
I�

yiyiH
T
i

yTi Hiyi

�
:

For full-memory DFP, Hiyj = sj for j = 0; : : : ; i� 1. Using this fact, one can easily
verify that Pkyj = 0 for j = 0; : : : ; k. Therefore, full-memory DFP satis�es condition
(2.15) of Theorem 2.2. The same reasoning does not apply to the limited-memory
case as we shall show in x2.3.

The next corollary gives some ideas for other methods that are related to L-BFGS
and terminate in at most n iterations on strictly convex quadratics.

Corollary 2.5. The L-BFGS (2.5) method will terminate in n iterations on
an n-dimensional strictly convex quadratic function even if any combination of the
following modi�cations is made to the update:

1. Vary the limited-memory constant, keeping mk � 1.
2. Form the projections used in Vk from the most recent (sk;yk) pair along with

any set of m� 1 other pairs from f(s0;y0); : : : ; (sk�1;yk�1)g .
3. Form the projections used in Vk from the most recent (sk;yk) pair along with

any m � 1 other linear combinations of pairs from f(s0;y0); : : : ; (sk�1;yk�1)g:
4. Iteratively rescale H0.

Proof. For each variant, we show that the method �ts the general form in (2.1),
satis�es condition (2.15) of Theorem 2.2 and hence terminates by Corollary 2.3.

1. Let m > 0 be any value which may change from iteration to iteration, and
de�ne

Vik =
kY
j=i

I�

yjs
T
j

sTj yj

!
:

14 T. Gibson, D. P. O'Leary, L. Nazareth

Choose

k = 1; mk = minfk + 1;mg;

Pk = Qk = Vk�mk+1;k; and

wik = zik =
(Vk�mk+i+1;k)

T (sk�mk+i)p
(sk�mk+i)

T (yk�mk+i)
:

These choices �t the general form. Furthermore,

Pkyj =

�
0 if j = k �mk; k�mk + 1; : : : ; k; and
yj if j = 0; 1; : : : ; k �mk � 1;

so this variation satis�es condition (2.15) of Theorem 2.2.
2. This is a special case of the next variant.

3. At iteration k, let (ŝ
(i)
k ; ŷ

(i)
k) denote the ith (i = 1; : : : ;m � 1) choice of any

linear combination from the span of the set

f(s0;y0); : : : ; (sk�1;yk�1)g;

and let (ŝ(m)k ; ŷ
(m)
k) = (sk;yk). De�ne

Vik =
mY
j=i

I �

(ŷ(i)k)(ŝ(i)k)T

(ŝ
(i)
k)T (ŷ

(i)
k)

!
:

Choose

k = 1; mk = minfk + 1;mg;

Pk = Qk = V1;k; and

wik = zik =
(Vi+1;k)T (ŝ

(i)
k)q

(ŝ
(i)
k)T (ŷ

(i)
k)

:

These choices satisfy the general form (2.1). Furthermore,

Pkyj =

�
0 if yj = y

(i)
k for some i; and

yj otherwise:

Hence, this variation satis�es condition (2.15) of Theorem 2.2.
4. Let
k in (2.1) be the scaling constant, and choose the other vectors and

matrices as in L-BFGS (2.6).
Combinations of variants are left to the reader.

Remark. Part 3 of the previous corollary shows that the \accumulated step"
method of Gill and Murray [10] terminates on quadratics.

Remark. Part 4 of the previous corollary shows that scaling does not a�ect
termination in L-BFGS. In fact, for any method that �ts the general form, it is easy
to see that scaling will not a�ect termination on quadratics.

2.3. Examples of Methods that Do Not Reproduce the CG Iterates.

We will discuss several methods that �t the general form given in (2.1) but do not
satisfy the conditions of Theorem 2.2.

L-BFGS Variations 15

Example. Steepest descent, see (2.3), does not satisfy condition (2.15) of The-
orem 2.2 and thus does not produce conjugate search directions. This fact is well-
known; see, e.g., Luenberger [16].

Example. Limited-memory DFP, see (2.8), with m < n does not satisfy the con-
dition on Pk (2.15) for all k, and so the method will not produce conjugate directions.

For example, suppose that we have a convex quadratic with

A =

2
4 1 0 0

0 2 0
0 0 4

3
5 ; and b =

2
4 1

1
1

3
5 :

Using a limited-memory constant of m = 1 and exact arithmetic, it can be seen that
the iteration does not terminate within the �rst 20 iterations of limited-memory DFP
with H0 = I. The MAPLE notebook �le used to compute this example is available
on the World Wide Web [9].

Remark. Using the above example, we can easily see that no limited-memory
Broyden class method except limited-memory BFGS terminates within the �rst n
iterations.

3. Update-Skipping Variations for Broyden Class Quasi-Newton Algo-

rithms. The previous section discussed limited-memory methods that behave like
conjugate gradients on n-dimensional strictly convex quadratic functions. In this sec-
tion, we are concerned with methods that skip some updates in order to reduce the
memory demands. We establish conditions under which �nite termination is preserved
but delayed for the Broyden Class.

3.1. Termination when Updates are Skipped. It was shown by Powell [26]
that if we skip every other update and take direct prediction steps (i.e. steps of length
one) in a Broyden class method, then the procedure will terminate in no more than
2n+1 iterations on an n-dimensional strictly convex quadratic function. An alternate
proof of this result is given by Nazareth [21].

We will prove a related result. Suppose that we are doing exact line searches using
a Broyden Class quasi-Newton method on a strictly convex quadratic function and
decide to \skip" p updates to H (i.e. choose Hk+1 = Hk on p occasions). Then, the
algorithm terminates in no more than n+ p iterations. In contrast to Powell's result,
it does not matter which updates are skipped or if multiple updates are skipped in a
row.

Theorem 3.1. Suppose that a Broyden Class method using exact line searches
is applied to an n-dimensional strictly convex quadratic function and p updates are
skipped. Let

J(k) = fj � k : the update at iteration j is not skippedg:

Then for all k = 0; 1; : : :

gTk+1sj = 0; for all j 2 J(k); and(3.1)

sTk+1Asj = 0; for all j 2 J(k):(3.2)

Furthermore, the method terminates in at most n + p iterations at the exact mini-
mizer.

Proof. We will use induction on k to show (3.1) and

Hk+1yj = sj ; for all j 2 J(k):(3.3)

16 T. Gibson, D. P. O'Leary, L. Nazareth

Then (3.2) follows easily since for all j 2 J(k),

sTk+1Asj = ��k+1gk+1Hk+1yj

= ��k+1gk+1sj

= 0:

Let k0 be the least value of k such that J(k) is nonempty; i.e., J(k0) = fk0g.
Then gk0+1 is orthogonal to sk0 since line searches are exact, and Hk0+1yk0 = sk0
since all members of the Broyden Family satisfy the secant condition. Hence, the base
case is true. Now assume that (3.1) and (3.3) hold for all values of k = 0; 1; : : : ; k̂�1.

We will show that they also hold for k = k̂.
Case I. Suppose that k̂ 62 J(k̂). Then H

k̂+1 = H
k̂
and J(k̂ � 1) = J(k̂), so for

any j 2 J(k̂),

gT
k̂+1

sj = (gk̂ +Ask̂)
T sj(3.4)

= gT
k̂
sj + sT

k̂
Asj

= 0;

and

H
k̂+1yj = H

k̂
yj = sj:

Case II. Suppose that k̂ 2 J(k̂). Then H
k̂+1 satis�es the secant condition and

J(k̂) = J(k̂�1)[fk̂g. Now g
k̂+1 is orthogonal to sk since the line searches are exact,

and it is orthogonal to the older sj by the argument in (3.4). The secant condition

guarantees that H
k̂+1yk̂ = s

k̂
, and for j 2 J(k̂) but j 6= k̂ we have

H
k̂+1yj = H

k̂
yj +

sk̂s
T

k̂

sk̂yk̂
yj �

Hk̂yk̂y
T

k̂
Hk̂

yT
k̂
H
k̂
y
k̂

yj

+ � (yT
k̂
H
k̂
y
k̂
)

s
k̂

sT
k̂
yk̂

�
H
k̂
y
k̂

yT
k̂
Hk̂yk̂

!
s
k̂

sT
k̂
yk̂

�
H
k̂
y
k̂

yT
k̂
Hk̂yk̂

!T
yj

= sj +
sT
k̂
Asj

sk̂yk̂
s
k̂
�
H
k̂
y
k̂
yT
k̂
sj

yT
k̂
Hk̂yk̂

+ � (y
k̂
H
k̂
y
k̂
)

s
k̂

sT
k̂
yk̂

�
H
k̂
y
k̂

yT
k̂
Hk̂yk̂

!
sT
k̂
Asj

sT
k̂
yk̂

�
yT
k̂
sj

yT
k̂
Hk̂yk̂

!

= sj:

In either case, the induction result follows.
Suppose that we skip p updates. Then the set J(n � 1 + p) has cardinality n.

Without loss of generality, assume that the set fsigi2J(n�1+p) has no zero elements.
From (3.2), the vectors are linearly independent. By (3.1),

gTn+psj = 0; for all j 2 J(n� 1 + p);

and so gn+p must be zero. This implies that xn+p is the exact minimizer of f .

L-BFGS Variations 17

3.2. Loss of Termination for Update Skipping with Limited-Memory.

Unfortunately, updates that use both limited-memory and repeated update-skipping
do not produce n conjugate search directions for n-dimensional strictly convex qua-
dratics, and the termination property is lost. We will show a simple example, limited-
memory BFGS with m = 1, skipping every other update. Note that according to
Corollary 2.4, we would still be guaranteed termination if we used the most recent
information in each update.

Example. Suppose that we have a convex quadratic with

A =

2
4 1 0 0

0 2 0
0 0 4

3
5 ; and b =

2
4 1

1
1

3
5 :

We apply limited-memory BFGS with limited-memory constant m = 1 and H0 = I

and skip every-other update to H. Using exact arithmetic in MAPLE, we observe
that the process does not terminate even after 100 iterations [9].

4. Experimental Results. The results of x2 and x3 lead to a number of ideas
for new methods for unconstrained optimization. In this section, we motivate, de-
velop, and test these ideas. We describe the collection of test problems in x4.2. The
test environment is described in x4.3. Section 4.4.1 outlines the implementation of the
L-BFGS method (our base for all comparisons) and xx4.4.2{4.4.7 describe the varia-
tions. Pseudo-code for L-BFGS and its variations is given in Appendix B. Complete
numerical results, many graphs of the numerical results, and the original FORTRAN
code are available [9].

4.1. Motivation. So far we have only given results for convex quadratic func-
tions. While termination on quadratics is beautiful in theory, it does not necessarily
yield insight into how these methods will do in practice.

We will not present any new results relating to convergence of these algorithms
on general functions; however, many of these can be shown to converge using the
convergence analysis presented in x7 of [15]. In [15], Liu and Nocedal show that
a limited-memory BFGS method implemented with a line search that satis�es the
strong Wolfe conditions (see x4.3 for a de�nition) is R-linearly convergent on a convex
function that satis�es a few modest conditions.

4.2. Test Problems. For our test problems, we used the Constrained and Un-
constrained Testing Environment (CUTE) by Bongartz, Conn, Gould and Toint. The
package is documented in [3] and can be obtained via the world wide web [2] or via ftp
[1]. The package contains a large collection of test problems as well as the interfaces
necessary for using the problems. The test problems are stored as \SIF" �les. We
chose a collection of 22 unconstrained problems. The problems ranged in size from
10 to 10,000 variables, but each took L-BFGS with limited-memory constant m = 5
at least 60 iterations to solve. Table 4.1 enumerates the problems, giving the SIF �le
name, the dimension (n), and a description for each problem. The CUTE package
also provides a starting point (x0) for each problem.

4.3. Test Environment. We used FORTRAN77 code on an SGI Indigo2 to
run the algorithms, with FORTRAN BLAS routines from NETLIB. We used the
compiler's default optimization level.

Figure 2.1 outlines the general quasi-Newton implementation that we followed.
For the line search, we use the routines cvsrch and cstep written by Jorge J. Mor�e

18 T. Gibson, D. P. O'Leary, L. Nazareth

No. SIF Name n Description & Reference

1 EXTROSNB 10 Extended Rosenbrock function (nonseparable
version) [30, Problem 10].

2 WATSONS 31 Watson problem [17, Problem 20].
3 TOINTGOR 50 Toint's operations research problem [29].
4 TOINTPSP 50 Toint's PSP operations research problem [29].
5 CHNROSNB 50 Chained Rosenbrock function [29].
6 ERRINROS 50 Nonlinear problem similar to CHNROSNB [28].
7 FLETCHBV 100 Fletcher's boundary value problem [8, Prob-

lem 1].
8 FLETCHCR 100 Fletcher's chained Rosenbrock function [8, Prob-

lem 2].
9 PENALTY2 100 Second penalty problem [17, Problem 24].
10 GENROSE 500 GeneralizedRosenbrock function [18, Problem5].
11 BDQRTIC 1000 Quartic with a banded Hessian with band-

width=9 [5, Problem 61].
12 BROYDN7D 1000 Seven diagonal variant of the Broyden tridiagonal

system with a band away from diagonal [29].
13 PENALTY1 1000 First penalty problem [17, Problem 23].
14 POWER 1000 Power problem by Oren [25].
15 MSQRTALS 1024 The dense matrix square root problem by No-

cedal and Liu (case 0) seen as a nonlinear equa-
tion problem [4, Problem 204].

16 MSQRTBLS 1025 The dense matrix square root problem by No-
cedal and Liu (case 1) seen as a nonlinear equa-
tion problem [4, Problem 201].

17 CRAGGLVY 5000 Extended Cragg & Levy problem [30, Prob-
lem 32].

18 NONDQUAR 10000 Nondiagonal quartic test problem [5, Prob-
lem 57].

19 POWELLSG 10000 Extended Powell singular function [17, Prob-
lem 13].

20 SINQUAD 10000 Another function with nontrivial groups and rep-
etitious elements [12].

21 SPMSRTLS 10000 Liu and Nocedal tridiagonal matrix square root
problem [4, Problem 151].

22 TRIDIA 10000 Shanno's TRIDIA quadratic tridiagonal problem
[30, Problem 8].

Table 4.1

Test problem collection. Each problems was chosen from the CUTE package.

and David Thuente from a 1983 version of MINPACK. This line search routine �nds an
� that meets the strong Wolfe conditions,

f(x + �d) � f(x) + !1�g(x)
Td;(4.1)

jg(x+ �d)Tdj � !2jg(x)
T sj;(4.2)

see, e.g., Nocedal [23]. We used !1 = 1:0� 10�4 and !2 = 0:9. Except for the �rst
iteration, we always attempt a step length of 1.0 �rst and only use an alternate value
if 1.0 does not satisfy the Wolfe conditions. In the �rst iteration, we initially try a
step length equal to kg0k�1. The remaining line search parameters are detailed in
Appendix A.

We generate the matrix Hk by either the limited-memory update or one of the
variations described in x4.4, storing the matrix implicitly in order to save both memory
and computation time.

We terminate the iterations if any of the following conditions are met at iteration

L-BFGS Variations 19

k:
1. The inequality

kgkk

kxkk
< 1:0� 10�5;

is satis�ed,
2. the line search fails, or
3. the number of iterations exceeds 3000.

We say that the iterates have converged if the �rst condition is satis�ed. Otherwise,
the method has failed.

4.4. L-BFGS and its variations. We tried a number of variations to the stan-
dard L-BFGS algorithm. L-BFGS and these variations are described in this subsection
and summarized in Table 4.2.

4.4.1. L-BFGS: Algorithm 0. The limited-memory BFGS update is given in
(2.5) and described fully by Byrd, Nocedal and Schnabel [22]. Our implementation
and the following description come essentially from [22].

Let H0 be symmetric and positive de�nite and assume that the mk pairs

fsi;yig
k�1
i=k�mk

each satisfy sTi yi > 0.
We will let

Sk = [sk�mk
sk�mk+1 � � � sk�1] and Yk = [yk�mk

yk�mk+1 � � �yk�1];

where mk = minfk + 1;mg, and m is some positive integer. We will assume that
H0 = I and that H0 is iteratively rescaled by a constant
k as is commonly done
in practice. Then, the matrix Hk obtained by k applications of the limited-memory
BFGS update can be expressed as

Hk =
kI +
�
Sk
kYk

�� U�T
k (Dk +
kY

T
kYk)U

�1
k �U�T

k

�U�1
k 0

��
STk

kY
T
k

�
;

where Uk and Dk are the mk �mk matrices given by

(Uk)ij =

�
(sk�mk�1+i)

T (yk�mk�1+j) if i � j;
0 otherwise;

and

Dk = diagf(sk�mk
)T (yk�mk

); : : : ; sTk�1yk�1g:

We will describe how to compute dk = �Hkgk in the case that k > 0. Let xk
be the current iterate. Let mk = minfk + 1;mg. Given sk�1;yk�1;gk, the matrices
Sk�1;Yk�1;Uk�1;Y

T
k�1Yk�1;Dk�1, and the vectors STk�1gk�1;Y

T
k�1gk�1:

1. Update the n �mk�1 matrices Sk�1 and Yk�1 to get the n �mk matrices
Sk and Yk using sk�1 and yk�1

2. Compute the mk-vectors STk gk and YT
k gk.

3. Compute the mk-vectors S
T
k yk�1 and Y

T
k yk�1 by using the fact that

yk�1 = gk � gk�1:

We already know mk � 1 components of Skgk�1 from Sk�1gk�1, and likewise for
Ykgk�1. We need only compute sTk�1gk�1 and y

T
k�1gk�1 and do the subtractions.

20 T. Gibson, D. P. O'Leary, L. Nazareth

No. Reference Brief Description

0 x4.4.1 L-BFGS with no options.
1 x4.4.2, Variation 1 Allow m to vary iteratively basing the choice of m of kgk

and not allowing m to decrease.
2 x4.4.2, Variation 2 Allow m to vary iteratively basing the choice of m of kgk

and allowing m to decrease.
3 x4.4.2, Variation 3 Allow m to vary iteratively basing the choice ofm of kg=xk

and not allowing m to decrease.
4 x4.4.2, Variation 4 Allow m to vary iteratively basing the choice ofm of kg=xk

and allowing m to decrease.
5 x4.4.3 Dispose of old information if the step length is greater than

one.
6 x4.4.4, Variation 1 Back-up if the current iteration is odd.
7 x4.4.4, Variation 2 Back-up if the current iteration is even.
8 x4.4.4, Variation 3 Back-up if a step length of 1.0 was used in the last iteration.
9 x4.4.4, Variation 4 Back-up if kgkk > kgk�1k.
10 x4.4.4, Variation 3* Back-up if a step length of 1.0 was used in the last iteration

and we did not back-up on the last iteration.
11 x4.4.4, Variation 4* Back-up if kgkk > kgk�1k and we did not back-up on the

last iteration.
12 x4.4.5, Variation 1 Merge if neither of the two vectors to be merged is itself

the result of a merge and the 2nd and 3rd most recent steps
taken were of length 1.0.

13 x4.4.5, Variation 2 Merge if we did not do a merge the last iteration and there
are at least two old s vectors to merge.

14 x4.4.6, Variation 1 Skip update on odd iterations.
15 x4.4.6, Variation 2 Skip update on even iterations.
16 x4.4.6, Variation 3 Skip update if kgk+1k > kgkk.
17 Alg. 5 & Alg. 8 Dispose of old information and back-up on the next itera-

tion if the step length is greater than one.
18 Alg. 13 & Alg. 1 Merge if we did not do a merge the last iteration and there

are at least two old s vectors to merge, and allowm to vary
iteratively basing the choice of m of kgk and not allowing
m to decrease.

19 Alg. 13 & Alg. 3 Merge if we did not do a merge the last iteration and there
are at least two old s vectors to merge, and allow m to
vary iteratively basing the choice of m of kg=xk and not
allowing m to decrease.

20 Alg. 13 & Alg. 2 Merge if we did not do a merge the last iteration and there
are at least two old s vectors to merge, and allowm to vary
iteratively basing the choice ofm of kgk and allowingm to
decrease.

21 Alg. 13 & Alg. 2 Merge if we did not do a merge the last iteration and there
are at least two old s vectors to merge, and allowm to vary
iteratively basing the choice of m of kg=xk and allowingm
to decrease.

Table 4.2

Description of Numerical Algorithms

4. Compute U�1
k . Rather than recomputing U�1

k , we update the matrix from
the previous iteration by deleting the leftmost column and topmost row if mk = mk�1

and appending a new column on the right and a new row on the bottom. Let �k�1 =
1=sTk�1yk�1 and let (U

�1
k�1)

0 be the (mk�1)� (mk�1) lower right submatrix ofU�1
k�1

and let (STkyk�1)
0 be the upper mk � 1 elements of STk yk�1. Then

U�1
k =

�
(U�1

k�1)
0 ��k�1(U

�1
k�1)

0(STk yk�1)
0

0 �k�1

�
:

L-BFGS Variations 21

Note that sTk�1yk�1 = (STk yk�1)mk
and so is already computed.

5. Assemble YT
kYk. We have already computed all the components.

6. Update Dk using Dk�1 and sTk�1yk�1 = (STkyk�1)mk
.

7. Compute

k = yTk�1sk�1=y
T
k�1yk�1:

Note that both yTk�1sk�1 and y
T
k�1yk�1 have already been computed.

8. Compute two intermediate values

p1 = U�1
k STk gk;

p2 = U�1
k (
kY

T
kYkp1 +Dkp1 �
kY

T
k gk):

9. Compute

dk =
kYkp1 � Skp2 �
kgk:

The storage costs for this are very low. In order to reconstruct Hk, we need to
store Sk;Yk;U

�1
k ;YT

kYk, Dk (a diagonal matrix) and a few m-vectors. This requires
only 2mn + 2m2 + O(m) storage. Assuming m << n, this is much less storage than
the n2 storage required for typical implementation of BFGS.

Step Operation Count

2 4mn� 2m
3 4n+ 2m� 2
4 2m2 � 4m+ 3
7 1
8 8m2 + 2m
9 4m2 + 2m

Table 4.3

Operations Count for Computation of Hkgk . Steps with no operations are not shown.

The computation ofHg takes at most O(mn) operations assuming n >> m. (See
Table 4.3.) This is much less than the O(n2) time normally needed to compute Hg
when the whole matrix H is stored.

We are using L-BFGS as our basis for comparison. For information on the per-
formance of L-BFGS see Liu and Nocedal [15] and Nash and Nocedal [19].

4.4.2. Varying m iteratively: Algorithms 1{4. In typical implementations
of L-BFGS, m is �xed throughout the iterations: once m updates have accumulated,
m updates are always used. We considered the possibility of varying m iteratively,
preserving �nite termination on convex quadratics. Using an argument similar to that
presented in [15], we can also prove that this algorithm has a linear rate of convergence
on a convex function that satis�es a few modest conditions.

We tried four di�erent variations on this theme. All were based on the following
linear formula that scales m in relation to the size of kgk. Let mk be the number of
iterates saved at the kth iteration, with m0 = 1. Here, think of m as the maximum
allowable value of mk. Let the convergence test be given by kgkk=kxkk < �. Then
the formula for mk at iteration k is

mk = min

�
mk�1 + 1;

�
(m � 1)

log �k � log �0
log 100�� log �0

�
+ 1

�
:

22 T. Gibson, D. P. O'Leary, L. Nazareth

Alg. No. m = 5 m = 10 m = 15 m = 50

0 1 0 0 1
1 0 0 0 0
2 1 0 0 0
3 2 0 0 1
4 1 0 0 1
5 0 0 0 0
6 1 0 0 1
7 0 0 0 1
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 1 0 0 1
13 1 0 0 1
14 11 11 11 11
15 3 3 3 3
16 10 10 8 9
17 0 0 0 0
18 1 1 0 0
19 1 0 0 1
20 1 1 1 1
21 3 1 0 1

Table 4.4

The number of failures of the algorithms on the 22 test problems. An algorithm is said to have
\failed" on a particular problem if a line search fails or the maximum allowable number of iterations
(3000 in our case) is exceeded.

We have two choices for �k, and a choice of whether or not we will allowmk to decrease
as well as increase. The four variations are

1. �k = kgkk and require mk � mk�1,
2. �k = kgkk,
3. �k = kgkk=kxkk and require mk � mk�1, and
4. �k = kgkk=kxkk.

We used four values of m: 5,10,15 and 50, for each algorithm. The results are
summarized in Tables 4.4 { 4.8. More extensive results can be obtained [9].

Table 4.4 shows that these algorithms had roughly the same number of failures
as L-BFGS.

Table 4.5 compares each algorithm to L-BFGS in terms of function evaluations.
For each algorithm and each value of m, the number of times that the algorithm
used as few or fewer function evaluations than L-BFGS is listed relative to the total
number of admissible problems. Problems are admissible if at least one of the two
methods solved it. We observe that in all but three cases, the algorithm used as few
or fewer function evaluations than L-BFGS for over half the test problems.

Table 4.6 compares each algorithm to L-BFGS in terms of time. The entries are
similar to those in Table 4.5. Observe that Algorithms 1-4 did very well in terms of
time, doing as well or better than L-BFGS in nearly every case.

For each problem in each algorithm, we computed the ratio of the number of
function evaluations for the algorithm to the number of function evaluations for L-
BFGS. Table 4.7 lists the means of these ratios. A mean below 1.0 implies that
the algorithm does better than L-BFGS on average. The average is better for the
algorithms in 6 out of 16 cases for the �rst four algorithms. Observe, however, that
all the means are close to one.

L-BFGS Variations 23

Alg. No. m= 5 m = 10 m = 15 m= 50

1 8/22 10/22 17/22 17/22
2 7/22 13/22 13/22 19/22
3 14/21 14/22 12/22 15/21
4 12/21 17/22 15/22 16/21
5 19/22 20/22 20/22 21/22
6 21/21 22/22 22/22 21/21
7 8/22 12/22 10/22 10/22
8 12/22 14/22 12/22 15/22
9 6/22 13/22 12/22 16/22
10 12/22 14/22 12/22 15/22
11 10/22 10/22 11/22 14/22
12 21/21 22/22 22/22 21/21
13 3/22 4/22 4/22 4/22
14 2/21 2/22 2/22 2/21
15 2/22 1/22 1/22 1/22
16 1/22 1/22 1/22 1/22
17 12/22 13/22 12/22 14/22
18 3/22 4/22 5/22 4/22
19 2/22 3/22 4/22 4/22
20 2/22 4/22 4/22 5/22
21 1/22 2/22 4/22 4/22

Table 4.5

Function Evaluations Comparison. The �rst number in each entry is the number of times the
algorithm did as well as or better than normal L-BFGS in terms of function evaluations. The second
number is the total number of problems solved by at least one of the two methods (the algorithm
and/or L-BFGS).

We experience savings in terms of time for the �rst four algorithms. These algo-
rithms will tend save fewer vectors than L-BFGS since mk is typically less than m;
and so less work is done computing Hkgk in these algorithms. Table 4.8 gives the
mean of the ratios of time to solve for each value of m in each algorithm. Note that
most of the ratios are far below one in this case.

These variations did particularly well on problem 7. See [9] for more information.

4.4.3. Disposing of old information: Algorithm 5. We may decide that we
are storing too much old information and that we should stop using it. For example,
we may choose to throw away everything except for the most recent information
whenever we take a big step, since the old information may not be relevant to the
new neighborhood. We use the following test: If the last step length was bigger than
1, dispose of the old information.

The algorithm performed nearly the same as L-BFGS. There was substantial
deviation on only one or two problems for each value of m, and this seemed evenly
divided in terms of better and worse. From Table 4.4, we see that this algorithm
successfully converged on every problem. Table 4.5 shows that it almost always did
as well or better than L-BFGS in terms of function evaluations. However, Table 4.7
shows that the di�erences were minor. In terms of time, we observe that the algorithm
generally was faster than L-BFGS (Table 4.6), but again, considering the mean ratios
of time (Table 4.8), the di�erences were minor. The method also does particularly
well on problem 7 [9].

4.4.4. Backing Up in the Update to H: Algorithms 6-11. As discussed
in x2.2, if we always use the most recent s and y in the update, we preserve quadratic
termination regardless of which older values of s and y we use.

24 T. Gibson, D. P. O'Leary, L. Nazareth

Alg. No. m = 5 m = 10 m = 15 m = 50

1 15/22 18/22 20/22 18/22
2 16/22 19/22 18/22 18/22
3 16/21 14/22 15/22 15/21
4 17/21 18/22 20/22 18/21
5 15/22 13/22 14/22 15/22
6 16/21 19/22 15/22 15/21
7 11/22 11/22 10/22 7/22
8 11/22 7/22 6/22 5/22
9 9/22 10/22 7/22 8/22
10 11/22 8/22 5/22 5/22
11 9/22 8/22 9/22 5/22
12 11/21 12/22 8/22 11/21
13 5/22 10/22 13/22 17/22
14 2/21 2/22 2/22 3/21
15 6/22 6/22 9/22 10/22
16 1/22 2/22 3/22 3/22
17 11/22 8/22 5/22 4/22
18 8/22 14/22 19/22 20/22
19 11/22 11/22 17/22 19/22
20 10/22 14/22 17/22 19/22
21 9/22 16/22 16/22 18/22

Table 4.6

Time Comparison. The �rst number in each entry is the number of times the algorithm did as
well as or better than normal L-BFGS in terms of time. The second number is the total number of
problems solved by at least one of the two methods (the algorithm and/or L-BFGS).

Using this idea, we created some algorithms. Under certain conditions, we discard
the next most recent values of s and y in the H although we still use the most recent
s and y vectors and any other vectors that have been saved from previous iterations.
We call this \backing up" because it as if we back-up over the next most recent values
of s and y. These algorithms used the following four tests to trigger backing up:

1. The current iteration is odd.
2. The current iteration is even.
3. A step length of 1.0 was used in the last iteration.
4. kgkk > kgk�1k.

In two additional algorithms, we varied situations 3 and 4 by not allowing a back-up
if a back-up was performed on the previous iteration.

The backing up strategy seemed robust in terms of failures. In 4 out of the 6
variations we did for this algorithm, there were no failures at all. See Table 4.4 for
more information.

It is interesting to observe that backing up on odd iterations (Algorithm 6) and
backing up on even iterations (Algorithm 7) caused very di�erent results. Backing
up on odd iterations seemed to have almost no e�ect on the number of function
evaluations (Table 4.7) and little e�ect on the time (Table 4.8). However, backing up
on even iterations causes much di�erent behavior from L-BFGS. It does worse than
L-BFGS on most problems, but better on a few.

Algorithms 8 and 10 were two variations of the same idea: backing up if the
previous step length was one. This wipes out the data from the previous iteration
after it has been used in one update. Both show improvement over L-BFGS in terms
of function evaluations; in fact, these two algorithms have the best function evalua-
tion ratio for the m = 50 case (Table 4.7). Unfortunately, these algorithms did not
compete with L-BFGS in terms of time (Table 4.8). There is little di�erence between

L-BFGS Variations 25

Alg. No. m= 5 m = 10 m = 15 m= 50

1 1.054 1.017 0.931 1.008
2 1.099 0.976 0.968 0.945
3 1.006 0.957 1.391 1.014
4 0.998 1.297 0.970 1.000
5 1.021 0.971 1.005 1.010
6 1.000 1.000 1.000 1.000
7 1.099 0.996 1.205 1.020
8 0.991 1.677 1.507 0.891
9 1.035 1.371 1.005 0.947
10 0.991 1.677 1.507 0.891
11 1.044 0.992 0.981 0.916
12 1.000 1.000 1.000 1.000
13 1.137 1.178 1.244 1.373
14 7.521 7.917 8.288 8.502
15 3.408 4.778 5.292 5.900
16 8.981 5.671 5.807 6.710
17 0.981 1.023 0.924 0.918
18 1.201 1.529 1.209 1.365
19 1.212 1.959 1.242 1.387
20 1.263 1.101 1.226 1.375
21 1.406 1.161 1.178 1.394

Table 4.7

Mean function evaluations ratios for each algorithm compared to L-BFGS. Problems for which
either method failed are not used in this mean.

Algorithms 8 and 10 | probably because there were rarely many steps of length one
is a row.

Algorithms 9 and 11 are also two variations of the same idea: back-up on iteration
k + 1 if the norm of gk is bigger than the norm of gk+1. There is a larger di�erence
between the results of 9 and 11 than there was between 8 and 10. In terms of function
evaluation ratios (Table 4.7), Algorithm 11 did better, indicating that it may not be
wise to back-up twice in a row. Both of these did poorly in terms of time as compared
with L-BFGS (Table 4.8).

4.4.5. Merging s and y information in the update: Algorithms 12 and

13. Yet another idea is to \merge" s data so that it takes up less storage and com-
putation time. By merging, we mean forming some linear combination of various s
vectors. The y vectors would be merged correspondingly. Corollary 2.5 shows that
as long as the most recent s and y are used without merge, old s vectors may be
replaced by any linear combination of the old s vectors in L-BFGS.

We used this idea in the following way: if certain criteria were met, we replaced
the second and third newest s vectors in the collection by their sum, and did similarly
for the y vectors. We used various tests to determine when we would do a merge:

1. Neither of the two vectors to be merged is itself the result of a merge and
the second and third most recent steps taken were of length 1.0.

2. We did not do a merge the last iteration and there are at least two old s
vectors to merge.

The �rst variation (Algorithm 12) performs almost identically to L-BFGS, es-
pecially in terms of time (Table 4.5). Occasionally it did worse in terms of time
(Table 4.6). These observations are also re
ected in the other results in Table 4.7 and
Table 4.8. It is likely that very few vectors were merged.

The second variation (Algorithm 13) makes gains in terms of time, especially for

26 T. Gibson, D. P. O'Leary, L. Nazareth

Alg. No. m = 5 m = 10 m = 15 m = 50

1 0.972 0.894 0.784 0.884
2 0.993 0.831 0.780 0.783
3 0.955 0.870 1.071 0.898
4 0.907 1.119 0.823 0.856
5 1.041 0.969 0.993 1.004
6 1.007 0.983 0.977 0.995
7 1.088 1.010 1.179 1.692
8 1.057 1.421 1.426 1.425
9 1.032 1.220 1.043 1.173
10 1.056 1.405 1.440 1.412
11 1.062 1.050 1.062 1.208
12 1.008 1.011 1.013 1.002
13 1.083 1.082 0.983 0.960
14 4.585 3.703 3.228 2.417
15 2.318 2.583 2.700 2.633
16 8.589 5.428 4.894 5.956
17 1.053 1.166 1.089 1.399
18 1.081 1.229 0.860 0.885
19 1.130 1.423 0.915 0.923
20 1.114 0.867 0.837 0.916
21 1.258 0.927 0.859 0.974

Table 4.8

Mean time ratios for each algorithm compared to L-BFGS. Problems for which either method
failed are not used in this mean.

the larger values of m (Table 4.6 and Table 4.8). Unfortunately, this re
ects only a
saving in the amount of linear algebra required. The number of function evaluations
generally is larger for this algorithm than L-BFGS (Table 4.5 and Table 4.7).

4.4.6. Skipping Updates to H: Algorithms 14{16. If every other update
to H is skipped and a step length of one is always chosen, BFGS will terminate in
2n iterations on a strictly convex quadratic function. The same holds true when
doing an exact line search. (See x3.) Unfortunately, neither property holds in the
limited-memory case. We will, however, try some algorithms motivated by this idea.

The idea is that, every so often, we do not use the current s and y to update H,
and instead just use the old H. There are three variations on this theme.

1. Skip update on odd iterations.
2. Skip update on even iterations.
3. Skip update if kgk+1k > kgkk.

As with the algorithms that did back-ups, the results of the skipping on odd or
even iterations were quite di�erent. Skipping on odd updates (Algorithm 14) did
extremely well for every value of m on only two problems: 1 and 12. Otherwise, it did
very badly. Skipping on even updates (Algorithm 15) performed somewhat better. It
did extremely well on problem 7 but not on problems 1 and 12. It also did better than
L-BFGS in terms of time on more occasions than Algorithm 14 (Table 4.6). Neither
did well in terms of function evaluations, but the mean ratios for function evaluations
(Table 4.7) and time (Table 4.8) were usually far greater than one.

Skipping the update if the norm of g increased (Algorithm 16) did not do well at
all. It only did better in terms of function evaluations for one problem for each value
of m (Table 4.5) and rarely did better in terms of time (Table 4.6). It ratios were
very bad for function evaluations (Table 4.7) and time (Table 4.8)

L-BFGS Variations 27

4.4.7. Combined Methods: Algorithms 17-21. We did some experimenta-
tion with combinations of methods described in the previous sections.

In Algorithm 17, we combined Algorithms 5 and 8: we dispose of old information
and back-up on the next iterations if the step length is greater than one. Essentially
we are assuming that we have stepped out of the region being modeled by the quasi-
Newton matrix if we take a long step and we should thus rid the quasi-Newton matrix
of that information. This algorithm did well in terms of function evaluations, having
mean ratios of less than one for three values of m (Table 4.7), but it did not do as
well in terms of time.

In Algorithms 19-21, we combined merging and varying m. These algorithms did
well in terms of time for larger m (Table 4.8) but not in terms of function evaluations
(Table 4.7).

5. Conclusions. There is a spectrum of quasi-Newton methods, ranging from
those that require the storage of an n�n approximate Hessian (e.g. the Broyden fam-
ily) to those that require only the storage of a few vectors (e.g. conjugate gradients).
Limited-memory quasi-Newton methods fall in between these extremes in terms of
performance and storage. There are other methods that fall into the middle ground;
for example, conjugate gradient methods such as those proposed by Shanno [27] and
Nazareth [20], the truncated-Newton method [24, 6] and the partitioned quasi-Newton
method [13].

We have characterized which limited-memory quasi-Newton methods �tting a gen-
eral form (2.1) have the property of producing conjugate search directions on convex
quadratics. We have shown that limited-memory BFGS is the only Broyden family
member that has a limited-memory analog with this property. We also considered
update-skipping, something that may seem attractive in a parallel environment. We
show that update skipping on quadratic problems is acceptable for full-memory Broy-
den class members in that it only delays termination, but that we lose the property
of �nite termination if we both limit memory and skip updates.

We have also introduced some simple-to-implement modi�cations of the standard
limited-memoryBFGS algorithm that seem to behave well on some practical problems.

Appendix A. Line Search Parameters. Table A.1 give the line search pa-
rameters used for our code. Note that in the �rst iteration, the initial steplength is
kg0k�1 rather than 1.0.

Variable Value Description
STP 1.0 Step length to try �rst.
FTOL 1:0� 10�4 Value of !1 in Wolfe conditions.
GTOL 0.9 Value of !2 in Wolfe conditions.
XTOL 1:0� 10�15 Relative width of interval of uncertainty.
STPMIN 1:0� 10�15 Minimum step length.
STPMAX 1:0� 1015 Maximum step length.
MAXFEV 20 Maximum number of function evaluations.

Table A.1

Line Search Parameters

Appendix B. Pseudo-Code.

B.1. L-BFGS: Algorithm 0. The pseudo-code for the computation of dk =
�Hkgk at iteration k for L-BFGS is given in Figure B.2. The update of H is also
handled implicitly in this computation.

28 T. Gibson, D. P. O'Leary, L. Nazareth

% Compute d_k = -H_k g_k

if (sze == 0)

d = -g;

else

% Step 0

idx = 2 - (sze - oldsze);

% Step 1

S = [S(:,idx:oldsze),s];

Y = [Y(:,idx:oldsze),y];

% This is needed for Step 3 before we overwrite Stg and Ytg

Stoldg = [Stg(idx:oldsze); s'*oldg];

Ytoldg = [Ytg(idx:oldsze); y'*oldg];

% Step 2

Stg = S'*g;

Ytg = Y'*g;

% Step 3

Sty = Stg - Stoldg;

Yty = Ytg - Ytoldg;

% Step 4

rho = 1.0/Sty(sze);

invU = ...

[invU(idx:oldsze,idx:oldsze) -rho*invU(idx:oldsze,idx:oldsze)*Sty(1:sze-1)

zeros(1,sze-1) rho];

% Step 5

YtY = ...

[YtY(idx:oldsze,idx:oldsze) Yty(1:sze-1)

(Yty(1:sze-1))' Yty(sze)];

% Step 6

D = [D(idx:oldsze), Sty(sze)];

% Step 7

gamma = Sty(sze)/Yty(sze);

% Step 8

p1 = invU*Stg;

p2 = invU*(gamma*YtY*p1 + diag(D)*p1 - gamma*Ytg);

% Step 9

d = gamma*Y*p1 - S*p2 - gamma*g;

end

Fig. B.1. MATLAB pseudo-code for the computation of d = Hg in L-BFGS. sze is the number
of s vectors available for the update this iteration and oldsze is the number of s vectors that were
available the previous iteration. For L-BFGS, sze is chosen as the minimum of oldsze + 1 and m
(the limited-memory constant).

B.2. Varying m iteratively: Algorithms 1{4. Suppose that mk denotes the
number of (s;y) pairs to be used in the kth update. Then simply chose sze as the
minimum of oldsze + 1 and mk before computing dk.

B.3. Disposing of old information: Algorithm 5. If the disposal criterion
is met at iteration k, set oldsze to zero and sze to one before computing dk.

B.4. Backing Up in the Update to H: Algorithms 6-11. If we are to
back-up at iterations k, set oldsze to the one less than the previous value of sze and
set sze as the minimum of oldsze + 1 and m, as usual.

B.5. Merging s and y information in the update: Algorithms 12 and 13.

Merging is the most complicated variation to handle. Before we determine the newest
sze and before we compute dk, we execute the pseudo-code given in Figure B.1. We
then set oldsze to one less than the previous value of sze and set sze as the minimum
of oldsze + 1 and m, as usual. We are assuming we are at iteration k, but that the

L-BFGS Variations 29

newest values of s and y have not yet been added to S and Y.

% Execute before choosing new value for sze and before computing d

S(:,sze-1) = S(:,sze) + S(:,sze-1);

Y(:,sze-1) = Y(:,sze) + Y(:,sze-1);

Stg(sze-1) = S(:,sze-1)'*g;

Ytg(sze-1) = Y(:,sze-1)'*g;

delta = S(:,sze-1)'*Y(:,sze-1);

rho = 1.0/delta;

invU = ...

[invU(1:sze-2,1:sze-2) -rho*invU(1:sze-2,1:sze-2)*S(:,1:sze-2)'*Y(:,sze-1)

zeros(1,sze-2) rho];

temp = YtY(1:sze-2,sze-1) + YtY(1:sze-2,sze);

YtY = [YtY(1:sze-2,1:sze-2) temp

temp' Y(:,sze-1)'*Y(:,sze-1)];

D = [D(1:sze-2), delta];

Fig. B.2. MATLAB pseudo-code for the merge variation. This �xes the values of the compo-
nents that are used in the computation of dk.

B.6. Skipping Updates to H: Algorithms 14{16. To skip the update at
iteration k, set sze to oldsze. Compute Stg and Ytg before Step 0 and then skip to
Step 8 and continue.

REFERENCES

[1] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, ftp://thales.math.fundp.ac.be/
pub/cute.

[2] , http://www.rl.ac.uk/departments/ccd/numerical/cute/cute.html.
[3] , CUTE: constrained and unconstrained testing environment, ACM Transactions on

Mathematical Software, 21 (1995), pp. 123{160.
[4] A. Buckley, Test functions for unconstrained minimization, Tech. Report TR 1989CS-3,

Mathematics, statistics and computing centre, Dalhousie University, Halifax (CDN), 1989.
Cited in [1, 2, 3].

[5] A. Conn, N. Gould, M. Lescrenier, and P. Toint, Performance of a multifrontal scheme for
partially separable optimization, Tech. Report 88/4, Department of Mathematics, FUNDP,
Namur, Belgium, 1988. Cited in [1, 2].

[6] R. S. Dembo and T. Steihaug, Truncated-Newton algorithms for large-scale unconstrained
optimization, Mathematical Programming, 26 (1983), pp. 190{212.

[7] J. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Series in Computational Mathematics, Prentice Hall, 1983.

[8] R. Fletcher, An optimal positive de�nite update for sparse Hessian matrices, Numerical
Analysis NA/145, University of Dundee, 1992. Cited in [1, 2].

[9] T. Gibson, D. O'Leary, and L. Nazareth, http://www.cs.umd.edu/users/oleary/LBFGS/
index.html, 1996.

[10] P. E. Gill and W. Murray, Conjugate-gradient methods for large-scale nonlinear optimiza-
tion, Tech. Report SOL 79-15, Systems Optimization Laboratory, Department of Opera-
tions Research, Stanford University, Stanford, California, 94305, 1979.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, 2nd ed., 1989.

[12] N. Gould. Private communication to authors of [3]. Cited in [1, 2].
[13] A. Griewank and P. L. Toint, Partitioned variable metric updates for large structured opti-

mization problems, Numer. Math., 39 (1982), pp. 119{137.
[14] H. Khalfan, R. Byrd, and R. Schnabel, A theoretical and experimental study of the sym-

metric rank one update, Tech. Report CU-CS-489-90, Department of Computer Science,
University of Colorado at Boulder, 1990.

[15] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Mathematical Programming, 45 (1989), pp. 503{528.

[16] D. G. Luenberger, Linear and Nonlinear Programming, Addison Wesley, 2nd ed., 1984.

30 T. Gibson, D. P. O'Leary, L. Nazareth

[17] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware, ACM Trans. on Math. Software, 7 (1981), pp. 17{41.

[18] S. Nash, Newton-type minimization via the Lanczos process, SIAM Journal on Numerical
Analysis, 21 (1984), pp. 770{788.

[19] S. G. Nash and J. Nocedal, A numerical study of the limited memory BFGS method and the
truncated-Newton method for large scale optimization, SIAM J. Optimization, 1 (1991),
pp. 358{372.

[20] L. Nazareth, A relationship between BFGS and conjugate gradient algorithms and its impli-
cations for new algorithms, SIAM Journal on Numerical Analysis, 16 (1979), pp. 794{800.

[21] , On the BFGS method. Univ. of California, Berkeley, 1981.
[22] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computa-

tion, 35 (1980), pp. 773{782.
[23] , Theory of algorithms for unconstrained optimization, in Acta Numerica (1991), Cam-

bridge Univ. Press, 1992, pp. 199{242.
[24] D. P. O'Leary, A discrete Newton algorithm for minimizing a function of many variables,

Mathematical Programming, 23 (1982), pp. 20{33.
[25] S. Oren, Self-scaling variable metric algorithms, Part II: implementation and experiments,

Management Science, 20 (1974), pp. 863{874. Cited in [1, 2].
[26] M. J. D. Powell, Quadratic termination properties of minimization algorithms I. Statement

and discussion of results., J. Inst. Maths Applics, 10 (1972), pp. 333{342.
[27] D. F. Shanno, Conjugate gradient methods with inexact line searches, Math. of Oper. Res., 3

(1978), pp. 244{256.
[28] P. Toint, An error in specifying problem CHNROSNB. Cited in [1, 2].
[29] , Some numerical results using a sparse matrix updating formula in unconstrained opti-

mization, Mathematics of Computation, 32 (1978), pp. 839{852.
[30] , Test problems for partially separable optimization and results for the routine PSPMIN,

Tech. Report 83/4, Department of Mathematics, FUNDP, Namur, Belgium, 1983. Cited
in [1, 2, 3].

